麻花传媒91mv在线观看

EN
www.dcsz.com.cn

《甜蜜惩罚2》第二季的剧情EMNLP 2025 动态压缩CoT推理新方法LightThinker来了

随着 AI 技术的飞速发展,从「快思考」到「慢思考」,大语言模型(LLMs)在处理复杂推理任务上展现出惊人的能力。无论是我们熟知的思维链(CoT),还是更复杂的深度思考模式(Thinking),都让 AI 的回答日益精准、可靠。 然而,这种性能的提升并非没有代价。模型在推理过程中会产生大量的中间步骤和文本(tokens),这不仅极大地拖慢了计算速度,还对内存和计算资源造成了巨大的压力。简单来说,就是「想得越多,算得越慢,耗得越多」。 为了解决这一难题,研究者们从人类的认知过程中汲取灵感。想象一下人类在解决一个复杂数学题时的情景:我们通常会在草稿纸上写下关键的计算步骤(如下图 a 中的黄色高亮部分),而将一些辅助性的思考过程(非高亮部分)放在脑中。 本文中,来自浙江大学、蚂蚁集团等机构的研究者提出了LightThinker,它模仿了这一高效的思考模式。它训练 LLM 在推理过程中动态地将冗长的中间思考步骤压缩成紧凑的表示(gist tokens /cache tokens),然后「扔掉」原始的、繁琐的推理链,仅保留核心摘要以继续下一步的思考。 这样一来,存放在上下文窗口中的 tokens 数量被大幅削减,从而显著降低了内存占用和计算成本。 LightThinker 通过训练的方式让模型具备这种能力。这涉及到两个关键问题:「何时压缩?」和「如何压缩?」。整个过程可以概括为以下三个关键步骤: 步骤划分:首先,将模型原本冗长的完整回答 Y,按照语义或段落(即一个完整的「想法」)切分成若干个思维步骤 S1, S2, S3, ...。插入特殊指令符:在这些思维步骤之间,插入一组特殊的「指令令牌」4。这组指令符主要包含两个部分: 缓存令牌 (Cache Tokens, C):这是一组特殊的、用于存储压缩后信息的「摘要令牌」。它的作用就像是为即将产生的「思想摘要」预留的空白便签。输出令牌 (Output Token, [o]):这是一个强制性的输出信号,它的作用是告诉模型:「好了,摘要写完了,现在请基于这份摘要继续你下一步的思考」 。 经过这样的改造,原本一条完整的思考链,就变成了一个「思考步骤 1 S1 →进行压缩→ 继续思考步骤 S2 →再次压缩→ ...」的全新格式。这等于是在模型的学习材料中明确地标注出了「何时」需要进行压缩。 教会了模型「何时」压缩,下一步就是最关键的如何压缩。这主要通过一种名为 「Thought-based Attention Mask」的技术来实现,如图 2 (b) 所示。精确地控制着模型在思考时 “能看什么” 和 “不能看什么” 。 生成阶段(基于摘要生成思维):当思维步骤 Si 被成功压缩进 C 之后,更关键的一步来了。在生成下一个思绪片段 S (i+1) 时,注意力掩码会彻底「遮蔽」掉原始的思维步骤 Si。此时,模型只能「看到」最初的问题 X 和包括刚刚生成的摘要在内的所有历史摘要 。 通过这种方式,模型被迫学会仅依赖紧凑的「思想摘要」来进行连贯的、层层递进的推理,而不是依赖越来越长的原始思考全文。 经过以上两个步骤的训练,LightThinker 模型在实际推理时,就会形成一种高效的动态循环,如图 1 (b) 和图 2 (c) 所示,清晰地展示了「生成→压缩→抛弃」的动态循环过程。下面以图 1 (b) 为例进行分析: 模型接收问题,生成第一段思考(Thought 1)。触发压缩,将 Thought 1 中的核心信息压缩成紧凑的摘要(CT1)。抛弃原文,将冗长的 Thought 1 从上下文中丢弃。模型基于问题和摘要(CT1),生成第二段思考(Thought 2)。再次压缩,将 Thought 2 压缩为摘要(CT2),并丢弃 Thought 2 原文。如此循环,直到问题解决。 通过这种「即用即弃」的机制,LightThinker 确保了模型的上下文窗口始终保持在一个非常小的尺寸,从而解决了因上下文过长导致的内存爆炸和计算缓慢问题,实现了效率与性能的完美平衡。 图 3 展示了不同方法在推理过程中上下文长度的变化,其中曲线和坐标轴围城的面积为我们定义的新指标 Dependency,其意义生成 token 时需要关注 token 的数量总和。 峰值内存使用减少 70%:LightThinker 极大地节约了宝贵的内存资源。推理时间缩短 26%:在保证结果准确性的前提下,思考速度得到了显著提升。取得了准确度和效率的平衡。 当前对于加速大语言模型(LLMs)推理过程的研究主要集中在四类方法:模型量化、辅助解码、生成更少的 Token 和减少 KV 缓存。模型量化包括参数量化 [1-2] 和 KV 缓存量化 [3-4],辅助解码主要包括投机采样,本节将重点关注后两类方法。 需要注意的是,生成长文本和理解长文本代表着不同的应用场景,因此,专门针对长文本生成阶段的加速方法(例如,预填充阶段加速技术如 AutoCompressor [5]、ICAE [6]、LLMLingua [7]、Activation Beacon [8]、SnapKV [9] 和PyramidKV[10])不在此处讨论。以下是后两类方法的详细概述。 离散 Token 减少通过提示工程 Prompt [11-13]、指令微调 [14-15] 或强化学习 [16-17] 等技术来引导 LLM 在推理过程中使用更少的离散 token。例如,TALE [11] 提示 LLM 在预定义的 token 预算内完成任务。Arora 和 Zanette [16] 构建特定数据集并采用强化学习奖励机制来鼓励模型生成简洁准确的输出,从而减少 token 使用量。连续 Token 替换这些方法 [18-19] 探索使用连续空间 token 代替传统的离散词汇 token。一个代表性例子是CoConut[18],它利用课程学习来训练 LLM 使用连续 token 进行推理。无 Token 使用通过在模型层之间内化推理过程,在推理过程中直接生成最终答案而不需要中间 token [20-21]。 这三种策略都是在模型训练后实施的,推理过程中不需要额外干预。从技术上讲,这些方法的加速效果依次递增,但代价是 LLM 的泛化性能逐渐下降。此外,第一种策略并不能显著减少 GPU 内存使用。 基于剪枝的策略设计特定的淘汰策略 [22-25] 在推理过程中保留重要的 token。例如,StreamingLLM[23] 认为初始的 sink token 和最近的 token 是重要的;H2O [22] 关注具有高历史注意力分数的 token;SepLLM[24] 强调对应于标点符号的 token 是重要的。基于合并的策略引入锚点 token,训练 LLM 将历史重要信息压缩到这些 token 中,从而实现 KV 缓存合并 [26]。 这两种策略都需要在推理过程中进行干预。关键区别在于:第一种策略是无需训练的,但对每个生成的 token 都要应用淘汰策略;而第二种策略是基于训练的方法,允许 LLM 自主决定何时应用淘汰策略。 受限于自身的数据重构方案(目前分割思维步骤是依赖规则,而不是基于语义)和训练数据(约 16K 训练数据),本文方法在数学相关的任务上表现并不出色。 如下图所示,展示了 LightThinker 在 GSM8K 上的一个 Bad Case。研究者观察到,尽管 LLM 在思考过程中得出了正确答案(见上图中的 Model's Thoughts 字段),但在最终输出中却出现了错误(见图中的 Model's Solution 字段)。 具体来说,在 Model's Solution 字段的第三句话中,第一次出现的「4000」是错误的。这表明在第二次压缩步骤中发生了信息丢失(理论上,「8000」、「4000」和「24000」都应该被压缩,但 LLM 只压缩了「4000」和「24000」),导致后续的推理错误。这类错误在 GSM8K 数据集中频繁出现,表明当前的压缩方法对数值的敏感度还不够。

《甜蜜惩罚2》第二季的剧情
《甜蜜惩罚2》第二季的剧情IT之家 9 月 6 日消息,詹姆斯・韦布空间望远镜官网于 9 月 4 日发布博文,分享了一张新图片,展示了星团 Pismis 24 的壮观影像,该星团位于距地球 5500 光年的龙虾星云(Lobster Nebula,NGC 6357)核心区。萨里祖的禁赛理由是“实施暴力及违背体育道德的行为”,他被指“多次用拳头击打一名倒在地上的对方球员的侧腰与背部”;而巴尔贝罗则因“积极参与由对方引发的斗殴,并挥拳击打对方球队一名球员的颈部”,同样被处以一年禁赛。《甜蜜惩罚2》第二季的剧情17ccomgovcn据报道,在9月3日晚举行的新闻发布会上,普京谈及访华成果时表示,俄中两国就增加俄罗斯管道天然气供应达成的新协议,将为中国带来竞争优势,因为这些天然气供应将低于欧洲客户的价格。北京时间9月5日,中国足协发布公告,公开选聘中国男足国家队主教练。而足协对于新任国足主帅的执教目标,就是持续提升国足竞技水平和国际足联排名,完成2030年世界杯参赛目标任务。
20250921 ? 《甜蜜惩罚2》第二季的剧情那天下午,梅西在巴拉圭的比赛中踢了10分钟,当时佩克尔曼执教的阿根廷队已经提前锁定2006年德国世界杯的参赛资格,但最终还是以0-1输给了巴拉圭。《女人被男人进入后的心理变化》现有模型在处理视频内容时,难以在空间分辨率和时间覆盖范围之间取得平衡。现有方法通常在固定分辨率约束下采用均匀帧采样,这在内容理解需要细粒度视觉细节和时间一致性时,会导致性能欠佳。
《甜蜜惩罚2》第二季的剧情
? 杨超记者 高修府 摄
20250921 ? 《甜蜜惩罚2》第二季的剧情随着模型规模的增大,这种权衡变得更加复杂。超大版YOLO模型在静态INT8量化后,延迟从61.3毫秒降低到18.4毫秒,速度提升超过3倍,但准确性损失相对较小,仅下降约5.7%。这表明大型模型具有更好的量化容忍度,就像一个知识渊博的专家即使在信息有限的情况下,依然能维持相对较高的判断准确性。《成品ppt网站免费入口》新修订的治安管理处罚法将于2026年1月1日起施行,其中将兜底项缩限为“其他无故侵扰他人、扰乱社会秩序的寻衅滋事行为”。赵宏认为,因该表述还是不够明确,所以限制作用恐怕还是比较有限。
《甜蜜惩罚2》第二季的剧情
? 宁国伟记者 岳世红 摄
? 当时他曾透露自己完全没有任何工作,完全是零收入,经济出现严重问题,银行存款一度只剩五六十元,生活窘迫。由于没有签约公司,刘锡贤没有稳定工作,每月也没有固定收入。《少女初恋吃小头头视频免费播放》
扫一扫在手机打开当前页

Notice: fwrite(): write of 140 bytes failed with errno=28 No space left on device in /www/wwwroot/dll.byzziis.org/index.php on line 301