麻花传媒91mv在线观看

EN
www.dcsz.com.cn

办公室刺激战场第二季在线观看EMNLP 2025 动态压缩CoT推理新方法LightThinker来了

随着 AI 技术的飞速发展,从「快思考」到「慢思考」,大语言模型(LLMs)在处理复杂推理任务上展现出惊人的能力。无论是我们熟知的思维链(CoT),还是更复杂的深度思考模式(Thinking),都让 AI 的回答日益精准、可靠。 然而,这种性能的提升并非没有代价。模型在推理过程中会产生大量的中间步骤和文本(tokens),这不仅极大地拖慢了计算速度,还对内存和计算资源造成了巨大的压力。简单来说,就是「想得越多,算得越慢,耗得越多」。 为了解决这一难题,研究者们从人类的认知过程中汲取灵感。想象一下人类在解决一个复杂数学题时的情景:我们通常会在草稿纸上写下关键的计算步骤(如下图 a 中的黄色高亮部分),而将一些辅助性的思考过程(非高亮部分)放在脑中。 本文中,来自浙江大学、蚂蚁集团等机构的研究者提出了LightThinker,它模仿了这一高效的思考模式。它训练 LLM 在推理过程中动态地将冗长的中间思考步骤压缩成紧凑的表示(gist tokens /cache tokens),然后「扔掉」原始的、繁琐的推理链,仅保留核心摘要以继续下一步的思考。 这样一来,存放在上下文窗口中的 tokens 数量被大幅削减,从而显著降低了内存占用和计算成本。 LightThinker 通过训练的方式让模型具备这种能力。这涉及到两个关键问题:「何时压缩?」和「如何压缩?」。整个过程可以概括为以下三个关键步骤: 步骤划分:首先,将模型原本冗长的完整回答 Y,按照语义或段落(即一个完整的「想法」)切分成若干个思维步骤 S1, S2, S3, ...。插入特殊指令符:在这些思维步骤之间,插入一组特殊的「指令令牌」4。这组指令符主要包含两个部分: 缓存令牌 (Cache Tokens, C):这是一组特殊的、用于存储压缩后信息的「摘要令牌」。它的作用就像是为即将产生的「思想摘要」预留的空白便签。输出令牌 (Output Token, [o]):这是一个强制性的输出信号,它的作用是告诉模型:「好了,摘要写完了,现在请基于这份摘要继续你下一步的思考」 。 经过这样的改造,原本一条完整的思考链,就变成了一个「思考步骤 1 S1 →进行压缩→ 继续思考步骤 S2 →再次压缩→ ...」的全新格式。这等于是在模型的学习材料中明确地标注出了「何时」需要进行压缩。 教会了模型「何时」压缩,下一步就是最关键的如何压缩。这主要通过一种名为 「Thought-based Attention Mask」的技术来实现,如图 2 (b) 所示。精确地控制着模型在思考时 “能看什么” 和 “不能看什么” 。 生成阶段(基于摘要生成思维):当思维步骤 Si 被成功压缩进 C 之后,更关键的一步来了。在生成下一个思绪片段 S (i+1) 时,注意力掩码会彻底「遮蔽」掉原始的思维步骤 Si。此时,模型只能「看到」最初的问题 X 和包括刚刚生成的摘要在内的所有历史摘要 。 通过这种方式,模型被迫学会仅依赖紧凑的「思想摘要」来进行连贯的、层层递进的推理,而不是依赖越来越长的原始思考全文。 经过以上两个步骤的训练,LightThinker 模型在实际推理时,就会形成一种高效的动态循环,如图 1 (b) 和图 2 (c) 所示,清晰地展示了「生成→压缩→抛弃」的动态循环过程。下面以图 1 (b) 为例进行分析: 模型接收问题,生成第一段思考(Thought 1)。触发压缩,将 Thought 1 中的核心信息压缩成紧凑的摘要(CT1)。抛弃原文,将冗长的 Thought 1 从上下文中丢弃。模型基于问题和摘要(CT1),生成第二段思考(Thought 2)。再次压缩,将 Thought 2 压缩为摘要(CT2),并丢弃 Thought 2 原文。如此循环,直到问题解决。 通过这种「即用即弃」的机制,LightThinker 确保了模型的上下文窗口始终保持在一个非常小的尺寸,从而解决了因上下文过长导致的内存爆炸和计算缓慢问题,实现了效率与性能的完美平衡。 图 3 展示了不同方法在推理过程中上下文长度的变化,其中曲线和坐标轴围城的面积为我们定义的新指标 Dependency,其意义生成 token 时需要关注 token 的数量总和。 峰值内存使用减少 70%:LightThinker 极大地节约了宝贵的内存资源。推理时间缩短 26%:在保证结果准确性的前提下,思考速度得到了显著提升。取得了准确度和效率的平衡。 当前对于加速大语言模型(LLMs)推理过程的研究主要集中在四类方法:模型量化、辅助解码、生成更少的 Token 和减少 KV 缓存。模型量化包括参数量化 [1-2] 和 KV 缓存量化 [3-4],辅助解码主要包括投机采样,本节将重点关注后两类方法。 需要注意的是,生成长文本和理解长文本代表着不同的应用场景,因此,专门针对长文本生成阶段的加速方法(例如,预填充阶段加速技术如 AutoCompressor [5]、ICAE [6]、LLMLingua [7]、Activation Beacon [8]、SnapKV [9] 和PyramidKV[10])不在此处讨论。以下是后两类方法的详细概述。 离散 Token 减少通过提示工程 Prompt [11-13]、指令微调 [14-15] 或强化学习 [16-17] 等技术来引导 LLM 在推理过程中使用更少的离散 token。例如,TALE [11] 提示 LLM 在预定义的 token 预算内完成任务。Arora 和 Zanette [16] 构建特定数据集并采用强化学习奖励机制来鼓励模型生成简洁准确的输出,从而减少 token 使用量。连续 Token 替换这些方法 [18-19] 探索使用连续空间 token 代替传统的离散词汇 token。一个代表性例子是CoConut[18],它利用课程学习来训练 LLM 使用连续 token 进行推理。无 Token 使用通过在模型层之间内化推理过程,在推理过程中直接生成最终答案而不需要中间 token [20-21]。 这三种策略都是在模型训练后实施的,推理过程中不需要额外干预。从技术上讲,这些方法的加速效果依次递增,但代价是 LLM 的泛化性能逐渐下降。此外,第一种策略并不能显著减少 GPU 内存使用。 基于剪枝的策略设计特定的淘汰策略 [22-25] 在推理过程中保留重要的 token。例如,StreamingLLM[23] 认为初始的 sink token 和最近的 token 是重要的;H2O [22] 关注具有高历史注意力分数的 token;SepLLM[24] 强调对应于标点符号的 token 是重要的。基于合并的策略引入锚点 token,训练 LLM 将历史重要信息压缩到这些 token 中,从而实现 KV 缓存合并 [26]。 这两种策略都需要在推理过程中进行干预。关键区别在于:第一种策略是无需训练的,但对每个生成的 token 都要应用淘汰策略;而第二种策略是基于训练的方法,允许 LLM 自主决定何时应用淘汰策略。 受限于自身的数据重构方案(目前分割思维步骤是依赖规则,而不是基于语义)和训练数据(约 16K 训练数据),本文方法在数学相关的任务上表现并不出色。 如下图所示,展示了 LightThinker 在 GSM8K 上的一个 Bad Case。研究者观察到,尽管 LLM 在思考过程中得出了正确答案(见上图中的 Model's Thoughts 字段),但在最终输出中却出现了错误(见图中的 Model's Solution 字段)。 具体来说,在 Model's Solution 字段的第三句话中,第一次出现的「4000」是错误的。这表明在第二次压缩步骤中发生了信息丢失(理论上,「8000」、「4000」和「24000」都应该被压缩,但 LLM 只压缩了「4000」和「24000」),导致后续的推理错误。这类错误在 GSM8K 数据集中频繁出现,表明当前的压缩方法对数值的敏感度还不够。

办公室刺激战场第二季在线观看
办公室刺激战场第二季在线观看其实在协议达成前,冯德莱恩曾提出与美打交道的三大战略:准备报复性措施、扩大贸易伙伴多元化、强化欧盟单一市场。这一思路得到不少人的认同。在办公园区推广V2G还存在商业落地难题。李立理补充道,V2G已通过峰谷电价套利搭建起长效收益机制,但购售电如何分成,需要V2G运营商挨个和园区业主磋商,沟通成本过高。且在办公园区参与V2G涉及的中间环节较多,电网需求响应的激励补贴先发放给园区,再由桩企分配给车主,若车主获益较多,意味着要压缩充电桩运营商收益;若车主获益不足,又会缺乏参与热情,整体看商业闭环较难形成。办公室刺激战场第二季在线观看《小妹妹爱大棒棒免费观看电视剧一7乐》这堵墙很厚,很顽固,但必须要拆。毕竟,因为未来的竞争力,不是比谁加班多,而是比谁时间利用率好。而不明白这个人效常理的中层,肯定是落地不好的。1999年国庆50周年大阅兵,女民兵方队再次惊艳阅兵现场。此次女民兵方队仍由朝阳区组成。与国庆35周年阅兵一样,这次民兵服装是为受阅专门设计制作的,而不是平时执勤穿着的服装,因而更突出了时装特点。
20251001 ? 办公室刺激战场第二季在线观看另据北京时间8月18日报道,中原区三官庙街道综治中心工作人员表示,顾客多次点餐累计消费140多元。上周五双方达成协议,将再次进行调解。《夫妻快乐宝典》完整版但约莫就在一个月前,她的账号猛地转型了,充斥着成功女性的迷人香气。封面整齐划一,话题也有了倾向性,要么是聊婚姻聊育儿聊家庭,要么是揭开“刘德华凭什么红一辈子”背后的秘密。
办公室刺激战场第二季在线观看
? 李炯记者 范小红 摄
20251001 ? 办公室刺激战场第二季在线观看滴滴业务安全相关负责人表示,为维护司机接单公平,滴滴持续联合警方线下打击黑产作弊团伙,2024年至今,滴滴配合多地警方推动作弊器专项立案20余起。同时持续升级黑产外挂对抗技术,已识别并管控作弊器超200款。对安装作弊软件的司机,滴滴采取包括电话外呼警告、限制出车接单、封禁司机账号等一系列治理措施。《女人一旦尝到粗硬的心理反应》虹桥国际中央商务区管委会商务处朱小玲表示,白鹤的“跨境电商+产业带”模式,是商务区探索资源协同的重要试验田,支持白鹤镇与跨境公服建立合作,在产业带资源对接、跨境服务集成、跨境电商主体集聚等方面率先探索,发挥了很好的示范作用。管委会将通过资源倾斜、平台搭建、制度创新、人才培养等方式,营造更开放、更高效、更国际化的发展环境,助力白鹤镇立足虹桥,打造联动长三角、服务全国、辐射全球的“跨境电商 + 产业带”融合发展的标杆区域。
办公室刺激战场第二季在线观看
? 孟彩云记者 朱有贵 摄
? 凤凰网《风暴眼》在花毛村辗转寻到了释永信家的老宅。那是几间经年无人居住的小瓦房,透过窗玻璃,可见屋内一张木板床上垒着几块残破的瓦片。房前,一棵大椿树倒伏在地。暴躁妹妹高清免费观看电视剧视频
扫一扫在手机打开当前页