比如,前不久 AI 语音应用 Wispr Flow 靠「默念输入」,完成了 3000 万美元的 A 轮融资,累计融资额已达 5600 万美元;语音模型公司 Cartesia 在 3 月份完成了 6400 万美元的 A 轮融资,累计融资 9100 万美元;AI 语音合成公司ElevenLabs 更是在 1 月份宣布完成 1.8 亿美元的 C 轮融资,估值超过 30 亿美元。 与此同时,无论是 Meta、OpenAI、Google 等科技巨头,还是 MiniMax 等创业公司,都在密集发布自己的语音模型或语音产物。Siri 也被曝出或将被 ChatGPT 或 Claude 等模型接管,来跟上语音交互的进展。 在智能音箱红极一时的年代,大部分我们熟知的智能音箱品牌都搭载了声智的远场声学交互技术,比如小爱同学、天猫精灵、小度音箱等等。而「小爱小爱」的唤醒词,实际上也是来自于声智。 这家公司创办于 2016 年,一直在声学+ AI 交叉领域探索。然而,作为一家在幕后提供 AI 声学技术的公司,在大模型浪潮来临之后,果断选择下场投身开发自己的 C 端产物。毫无疑问,他们看到了这波「大模型+语音」浪潮里新的商业机会,其旗下的 AI 耳机目前出货量已接近 100 万套。 「可编程化」这个词,意味着将一种能力或者一个对象,通过清晰的接口和逻辑,变得可以被代码自由地调用、组合、修改和控制。过去,文字是可编程的,图像是可编程的,甚至视频也是可编程的(比如视频编辑软件)。 比如,之前在深圳、成都有很多做声音标注的团队,拿到语音之后,再人工转换成文字,打上不同的标签,比如各种特征、意向的标签。 以前做 NLP 的背后都是一堆苦逼的运营在那里打标签,让 AI 系统能够识别每个句子的意向。过去,语音的开发,每增加一个功能,都需要从头写代码,费时费力。比如,想让智能音箱支持「点外卖」,得单独开发一套语音识别和语义逻辑,成本高、周期长。 更重要的,依靠大模型对多模态数据的深度理解能力,对声学信号的更细致解析,使得声音本身携带的除了文字信息之外的更多信息,开始被 AI 系统直接捕捉、理解和「编程」。 这种可编程化,意味着 AI 可以像处理数据一样处理声音。它可以分析声音的频率、振幅、波形,提取出情绪特征、识别不同的声源、声源距离、甚至预测你的意图。 具体来说,「Sound」包含了更丰富的元素:语调、音色、节奏、情绪,更重要的是环境音。环境音里面可能包含了环境中的各种非语音信息,比如背景音乐、环境噪音(风声、雨声、车声)、物体发出的声音(开门声、打字声)、以及人类语音中包含的非语义信息(语调、语速、音色、语气词、叹息声、笑声、哭声等)。 比如说,你咳嗽的时候,跟 AI 说话,它可能会识别出咳嗽,然后跟你说多喝水;比如,你在咖啡馆说,「帮我找个安静的地方」,AI 不仅要理解你的指令,还要从背景音中判断出你当前的环境嘈杂,从而推荐附近的图书馆。 当我说「下一代对话交互的入口并非『Voice』,而是『Sound』」时,我指的是 AI 系统将不再仅仅依赖于识别你说的「词」,而是能够全面感知和理解你所处环境的「声学场景」中的所有关键元素。 只有当 AI 能够全面感知并解析「Sound」中包含的这些多维度信息时,它才能真正理解用户的深层需求,提供更精准、更个性化、更富有情感的交互。这才是真正的「语音交互」,它不仅仅是「听懂」字面意思,更是「听懂」你的「言外之意」和「心声」。 尽管大模型带来了语音交互的巨大飞跃,但语音交互当下依然存在一个核心的「卡点」,而这个卡点根植于物理学,具体来说,就是声学。 我们常说「听清、听懂、会说」。「听懂」和「会说」的能力,正在被大模型以前所未有的速度提升。但「听清」这个最基础的环节,却受到物理层面的制约。如果 AI 听不清你的指令,即便它能「听懂」再复杂的语义,能「会说」再动听的话语,那也都是空中楼阁。 比如说当下最热门的具身智能,现在很多机器人都是电驱动的,那么它带来几个大问题,一方面是电路的噪声本身就很大,另一方面是关节噪声,还有就是很多机器人是金属材质,厚厚的,声音在穿透时会大幅衰减。 所以,机器人动起来的时候,噪声很大,尤其在室外,更难听清楚人的指令。要么大声喊,或者拿麦克风喊。因此,现在很多机器人都要靠遥控器来控制。 这方面,其实就需要对声学层面的突破,比如说环境噪声的抑制,比如电路底噪的抑制,还有啸叫的抑制、混响回响的抑制等等。 而这些就是物理学科的逻辑,它需要数据样本,需要 know how 的壁垒,不仅是技术问题,而是时间的问题,需要时间去采集声音、做训练。 让 AI 准确地「听清」用户的指令,依然是一个世界级的难题。而声学相关的人才很少,所以像谷歌、微软、苹果经常会收购声学技术的初创公司,几乎只要出来一家就会收购他们。 现在很多 AI 应用的日活、留存不高,有个很大的原因就是普通人本身是不会提问的,让人向大模型提问,这本身就是一个非常高的交互门槛。 情绪识别:AI 通过分析语调、音量、语速,判断用户的情感状态。比如,你的声音颤抖,AI 可能推测你在紧张或伤心。 意图理解:不仅听懂你说了什么,还要明白你想做什么。比如,你说「播放音乐」,AI 会根据你的情绪,决定是放摇滚还是古典。 声纹识别:通过独一无二的音声波特征,区分不同用户。比如,家里的智能音箱能自动切换到「孩子模式」模式,只为孩子的声音提供安全的回应。 情绪生成:AI 的回应需要带有情感化的表达。比如,用温暖的语气说「别担心,我来帮你解决」,而不是机械的「好的,正在处理」。 不仅如此,从狭义的「Voice」拓展到广义的「Sound」,当 AI 能接收到的不仅仅是用户的指令,而是整个物理世界的实时反馈时,我们可以去构建一个「声学世界模型」。 这个「声学世界模型」可以理解声音在物理世界中产生、传播和交互的根本规律,它不仅要「听清」和「听懂」,更要具备「声学常识」和「声学推理」的能力:它能从一声闷响中分辨出是书本落地还是箱子倒塌;能通过回声判断出房间的大小与空旷程度;更能理解「脚步声由远及近」背后所蕴含的物理运动逻辑。 未来,当这样一个声学世界模型与视觉、语言大模型深度融合时,具身智能机器人将不再「失聪」和冰冷。这也是我们正在做的。 最近,多家机构发布了 AI 模拟高考成绩,个别大模型在数学、理综等科目中取得惊人成绩,已接近清北录取线。这一现象不仅展现了技术进步,也引发了对于教育、智能与未来人才的新一轮思考。


